بخشی از متن اصلی
چکیده:
بررسیهای ژئوشیمیایی(راک اول- بیومارکر- ایزوتوپ کربن) برروی سنگ منشا احتمالی کپه داغ شرقی نشان میدهد که سازند های کشف رود و چمن بید، با توجه به نوع و بلوغ ماده آلی میتوانند از سنگهای مادر منطقه محسوب شوند. سازند کشف رود با کروژنی از نوع دلتایی- دریایی در مرحله تولید گاز خشک قرار دارد، در حالیکه سازند چمن بید با کروژنی با منشا دریایی-کربناته در انتهای نفت زایی و در ابتدای تولید گاز تر میباشد. آنالیز های بیو مارکر و ایزوتوپ نشان میدهد که تغذیه مخزن مزدوران توسط سازند کشف رود بوده و منشا هیدروکربنها در مخزن شوریجه در نتیجه زایش مواد آلی از سازند چمن بید میباشد.
مطالعات ایزوتوپی و بیومارکری نشان میدهد که بخش مهم سولفید هیدروژن در مخزن مزدوران بر اثر احیای ترموشیمیایی سولفات (واکنش بین متان وانیدریت موجود در سازند کربناته مزدوران) بوجود آمده است. این سولفید هیدروژن با عث ترش شدگی در مخزن مزدوران شده است. مخزن شوریجه دارای لیتولوژی ماسه سنگی به همراه ترکیبات آهن دار فراوان و دارای درصد کمتری انیدریت در میان لایه های خود نسبت به سازند مزدوران است.پس سولفید هیدروژن کمتری تولید شده و آن نیز با آهن موجود در مخزن واکنش داده و بصورت پیریت رسوب کرده است. یعنی سنگ مخزن مانند یک فیلتر سبب حذف سولفید هیدروژن از مخزن گردیده است.
فهرست مطالب
عنوان صفحه
فصل اول: مقدمه 1
فصل دوم: زمین شناسی منطقه کپه داغ 2
2-1-مقدمه 2
2-2-محل و موقعیت 2
2-3- ریخت شناسی منطقه 3
2-4- چینه شناسی منطقه 4
2-4-1- پرکامبرین 4
2-4-1-1- شیستهای گرگان 4
2-4-2- کامبرین- اردویسین 5
2-4-2-1- سازندلالون 5
2-4-2-2- سازند میلا 5
2-4-2-3- سازند قلی 5
2-4-3- سیلورین 5
2-4-3-1- سازند نیور 5
2-4-4- دونین 5
2-4-4-1- سازند پادها 5
2-4-4-2- سازند خوش ییلاق 6
2-4-5- کربنیفر 6
2-4-5-1- سازند مبارک 6
2-4-6- پرمین 6
2-4-6-1- سازند دورود 6
2-4-6-2 سازند روته 6
2-4-6-3- سازند نسن 6
2-4-7- تریاس 6
2-4-7-1- سازند الیکا 6
2-4-7-2- سازند قره قیطان 7
2-4-7-3- گروه آق دربند 7
2-4-7-3-1- سازند سفید کوه 7
2-4-7-3-2- سازند نظر کرده 7
2-4-7-3-3- سازند سینا 7
2-4-7-3-4- سازند شیلی میانکوهی 7
2-4-8- ژوارسیک 8
2-4-8-1- سازند شمشک 8
2-4-8-2- سازند کشف رود 9
2-4-8-3- سازند بادامو 12
2-4-8-4- سازند باش کلاته 12
2-4-8-5- سازند خانه زو 12
2-4-8-6- سازند چمن بید 12
2-4-8-7- سازند مزدوران 14
2-4-8-7-1- محل برش الگو 14
2-4-8-7-2- گسترش منطقه ای 17
2-4-9- کرتاسه 17
2-4-9-1- سازند شوریجه 17
2-4-9-1-1 محل برش الگو 17
2-4-9-1-2- گسترش منطقه ای 22
2-4-9-2 سازند زرد 23
2-4-9-3- سازند تیرگان 23
2-4-9-4- سازند سرچشمه 23
2-4-9-5- سازند سنگانه 23
2-4-9-6- سازند آیتامیر 24
2-4-9-7 سازند آب دراز 24
2-4-9-8- سازند آب تلخ 24
2-4-9-9- سازند نیزار 24
2-4-9-10- سازند کلات 25
2-4-10- ترشیر 25
2-4-10-1- سازند پسته لیق 25
2-4-10-2- سازند چهل کمان 26
2-4-10-3 سازند خانگیران 26
2-4-11- نهشته های نئوژن 26
2-4-12- پلیوسن 26
2-4-12-1- کنگلومرای پلیوسن 26
2-4-12-2- سازند آقچه گیل 26
2-5- زمین شناسی ساختمانی منطقه 27
2-6-پتانسیل هیدروکربنی منطقه 28
2-6-1- معرفی مخازن گازی کپه داغ 28
2-6-1-1- میدان گازی خانگیران 28
2-6-1-2- لایه بندی مخزن مزدوران 29
2-6-1-3- فشار و دمای اولیه مخزن 30
2-6-2-میدان گازی گنبدلی 30
2-6-2-1- لایه بندی مخزن شوریجه 30
2-6-2-2- فشار و دمای اولیه مخزن 30
فصل سوم: روشهای مطالعه 31
3-1- مقدمه 31
3-2- دستگاه راک اول 31
3-2-1- ویژگی های پارامترهای راک – اول 33
3-2-2- کل کربن آلی(TOC) 34
3-2-3- اندیس اکسیژن (OI) 35
3-2-4- اندیس تولید (PI) 35
3-2-5-اندیس هیدروکربن زایی((GI 35
3-2-6-اندیس مهاجرت(MI) 35
3-2-7-اندیس نوع هیدروکربن (Hydrocarbon Ttype Index) 35
3-2-8- اندیس هیدروژن (HI) 35
3-2-9-نمودار نسبتهای HI/Tmax HI/OI وS1/TOC و S2/TOC 36
3-2-10-تفسیر داده های راک اول 38
3-3- گاز کروماتو گرافی / طیف سنج جرمی 38
3-3-1-گاز کروماتوگرافی درGCMS 39
3-3-1-1-آنالیز گرافهای گاز کروماتوگرافی 41
3-3-2-طیف سنج جرمی در GCMS 42
3-4-بایومارکرها ( نشانه های زیستی) 44
3-4-1- مقدمه 44
3-4-1-1- بیومارکرها یا نشانه های زیستی 45
3-4-1-2- انواع بیومارکرها 47
3-4-2-پارامتر های بیومارکری برای تطابق، منشا و محیط رسوبی 49
3-4-2-1ترپانها (Terpanes) 54
3-4-2-2-اندیس هموهوپان 57
3-4-2-3-نسبت پریستان به فیتان 59
3-4-2-4-نسبت (Isopenoid/n-Paraffin) 60
3-4-2-5-ایزوپرونوئید های غیر حلقوی>C20 61
3-4-2-6-باتریوکوکان 61
3-4-2-7-اندیس اولیانان(Oleanane) 61
3-4-2-8-بیس نورهوپانها و تریس نور هوپانها 62
3-4-2-9-اندیس گاماسران 62
3-4-2-10- نسبت(C30/C29Ts) 63
3-4-2-11- -β کاروتن و کاروتنویید 63
3-4-2-12- Bicyclic Sequiterpanes 63
3-4-2-13-کادینانها 63
3-4-2-14- دی ترپانهای دو و سه حلقه ای 64
3-4-2-15- فیچتلیت(Fichtelite) 65
3-4-2-16- دی ترپانهای چهار حلقه ای(Tetracyclic Diterpane) 65
3-4-2-17-ترپان سه حلقه ای 65
3-4-2-18-ترپانهای چهار حلقه ای 66
3-4-2-19-هگزا هیدرو بنزو هوپانها 66
3-4-2-20-لوپانها(Lupanes) 66
3-4-2-21-متیل هوپان(Methyl Hopanes) 66
3-4-3- استیرانها(Steranes) 67
3-4-3-1-نسبت Rgular Steranes/17α(H)-Hopanes 67
3-4-3-2- C26استیران 68
3-4-3-3- استیرانهای (C27-C28-C29) 68
3-4-3-4- اندیس C30-استیران 70
3-4-3-5- دیااستیرانهای(C27-C28-C29) 72
3-4-3-6-نسبت Diasteranes/Regular Steranes 72
3-4-3-7- 3-آلکیل استیران 73
3-4-3-8- 4-متیل استیران 73
3-4-4- استیروئید های آروماتیکی و هوپانوئید ها 74
3-4-4-1- C27-C28-C29- منو آروماتیک استیروئیدها 74
3-4-4-2-(Dia/Dia+Regular)C-Ring Monoaromatic Steroids 76
3-4-4-3- C¬26-C27-C28تری آروماتیک استیروئید 76
3-4-4-4- بنزوهوپانها (Benzohopanes) 76
3-4-4-5-پریلن( (Perylene 76
3-4-4-6- m/z 239(Fingerprint) و(Fingerprint) m/z 276 77
3-4-4-7- Degraded Aromatic Deterpane 77
3-4-4-8-خصوصیات ژئوشیمی نفتها برای تطابق با سنگ منشا 77
3-4-5-بلوغ(Maturation) 79
3-4-5-1- بیومارکرها بعنوان پارامتری برای بلوغ 79
3-4-5-2-ترپانها 81
3-4-5-2-1-ایزومریزاسیون هموهوپان 22S/(22S+22R) 81
3-4-5-2-2-نسبت Βα-Moretane/αβ-Hopanes and ββ-Hopane 82
3-4-5-2-3- نسبت Tricyclic/17α(H)-Hopane 83
3-4-5-2-4- نسبت Ts/(Ts+Tm) 83
3-4-5-2-5- نسبت C29Ts/(C2917α(H)-Hopane+C29Ts) 84
3-4-5-2-6- نسبت Ts/C3017α(H)Hopane 84
3-4-5-2-7- اندیس Oleanane یا 18α/(18α+18β)-Oleanane 84
3-4-5-2-8- نسبت (BNH+TNH)/Hopanes 85
3-4-5-3- استیرانها (Steranes) 86
3-4-5-3-1- نسبت 20S/(20S+20R) 86
3-4-5-3-2-نسبت Ββ/(ββ+αα) 86
3-4-5-3-3- اندیس بلوغ بیومارکرها (BMAI) 87
3-4-5-3-4- نسبت Diasterane/Regular Sterane 89
3-4-5-3-5- نسبت 20S/(20S+20R) 13β(H),17α(H)-dia steranes89
3-4-5-4-استیروئید های آروماتیکی Aromatic steroids 89
3-4-5-4-1- نسبت TA/(MA+TA) 89
3-4-5-4-2- نسبتMA(I)/MA(I+II) 90
3-4-5-4-3- نسبتTA(I)/TA(I+II) 91
3-4-5-4-4- نسبتC26-Triaromatic 20S/(20S+20R) 91
3-4-5-4-5- منوآروماتیک هوپانوئید (Monoaromatic Hopanoids ) 92
3-4-5-4-6- پارامتر MAH 92
3-4-6- تخریب میکروبی (Biodegradation) 93
3-4-6-1- پارامتر های بیومارکری تخریب میکروبی 93
3-4-6-1-1- ایزوپرنوئیدها(Isopernoids) 95
3-4-6-1-2- استیران و دیااستیران(Steranes and Diasteranes) 95
3-4-6-1-3- هوپانها(Hopanes) 95
3-4-6-1-4- 25-نورهوپانها (25-Norhopanes) 96
3-4-6-1-5-C28-C34 30-nor-17α(H)-Hopane 96
3-4-6-1-6- ترپانهای سه حلقه ای 97
3-4-6-1-7- دیگر ترپانها 97
3-4-6-2- اثرات تخریب میکروبی در تعیین بلوغ و تطابق 97
3-4-7-تعیین سن بوسیله بایومارکرها 97
3-5- ایزوتوپهای پایدار 99
3-5-1- مقدمه 99
3-5-2- ایزوتوپهای پایدار 99
3-5-2-1- اکسیژن 100
3-5-2-2- کربن 102
3-5-2-2-1- ارتباط بین سن زمین شناسی و
نسبت ایزوتوپ کربن نفت و کروژن 106
3-5-2-2-2-کاربرد ایزوتوپ کربن در تعیین
نوع محیط رسوبی، نوع کروژن، نوع نفت و مسیر مهاجرت 108
3-5-2-2-2-1- نمودار سوفر(Sofer) 108
3-5-3- گوگرد 109
3-5-4– کاربرد ایزوتوپهای پایدار در مخازن گاز و کاندنسیت 111
فصل چهارم: نحوه نمونه برداری 114
4-1-مقدمه 114
4-2-نمونه گیری از میادین گازی 114
4-2-1- روش نمونه گیری گاز و سیالات مخزن 115
4-2-2- آنالیز نمونه های مخازن خانگیران وگنبدلی 117
4-3-داده های شرکت نفت 117
4-3-1-مقاطع و نمونه ها 119
فصل پنجم: بحث و تفسیر 120
5-1- مقدمه 120
5-2- تعبیر و تفسیر داده های راک اول 120
5-2-1-چاه امیرآباد-1 120
5-2-2-چاه خانگیران-30 125
5-2-2-1-سازند چمن بید 127
5-2-2-2-سازند کشف رود 129
5-3-تعبیر و تفسیر داده های راک اول مقاطع سطحی 132
5-3-1مقطع بغبغو 132
5-3-2-مقطع خور 137
5-3-3-مقطع فریزی 141
5-3-3-1-سازند شمشک 143
5-3-3-2-سازند باش کلاته 145
5-3-4-مقطع خانه زو 147
5-3-4-1-سازند چمن بید 150
5-3-4-2-سازند شمشک 152
5-3-5-مقطع اردک-آب قد 155
5-3-6-مقطع شورک 159
5-3-7-نتیجه گیری کلی آنالیز داده های راک-اول 163
5-4-تعبیر و تفسیر داده های گاز کروماتو گرافی 164
5-4-1-مقطع بغبغو سازند کشف رود(G-19) 166
5-4-2-مقطع خور سازند چمن بید(G-11) 167
5-4-3-مقطع اردک آب-قد سازند چمن بید(ABG-15) 167
5-4-4-مقطع شورک- سازند کشف رود(G-10) 168
5-4-5-مقطع بغبغو سازند کشف رود(G-45) 169
5-4-6-نتیجه گیری نهایی آنالیز داده های GC 169
5-5-تعبیر و تفسیر داده های بیومارکر مقاطع سطحی 169
5-5-1-سازند چمن بید 173
5-5-2- سازند کشف رود 174
5-5-3- نتیجه گیری نهایی آنالیز بیومارکرهای مقاطع سطحی 182
5-5-4- تعبیر وتفسیر داده های بیو مارکری
و ایزوتوپی میعانات سنگ مخزن مخازن مزدوران و شوریجه 182
5-5-4-1- تشخیص محیط رسوبی سنگ منشاء 182
5-5-4-1-1- نسبت C29/C27 استیران در مقابل نسبت Pr/Ph 183
5-5-4-2- تعیین محدوده سنی سنگ منشاء 184
5-5-4-2-1- نسبت C28/C29 استیران 184
5-5-4-2-2-ایزوتوپ کربن 185
5-5-5- تشخیص لیتولوژی سنگ منشاء 186
5-5-5-1- نسبت DBT/ PHEN در مقابل Pr/Ph 186
5-5-5-2-اندیس نورهوپان 187
5-5-5-3- نسبت C22/C21 تری سیکلیک ترپان
در مقابل نسبت C24/C23 تری سیکلیک ترپان 188
5-5-5-4- نسبتهای C24تترا سیکلیک ترپان 189
5-5-5-5- ایزوتوپ کربن در مقابل نسبت پریستان به فیتان 190
5-5-5-6- مقایسه نسبتهای بیومارکری 190
5-5-5-7- نتیجه گیری لیتولوژی سنگ منشاء 191
5-5-6-تشیخص بلوغ سنگ منشاء 191
5-5-6-1-نمودار C24Tet/C23Tri در مقابل C23Tri/C30Hopane 191
5-5-6-2- نمودار نسبت C30DiaHopan/C30Hopane 192
5-5-6-3- نمودار نسبت Pr/nC17 به Ph/nC18 مخازن 193
5-5-6-4- نتیجه گیری بلوغ سنگ منشاء 194
5-5-7- داده های ایزوتوپی کربن دو مخزن مورد مطالعه 194
5-5-8- تشخیص سنگ منشاء های مخازن مزدوران و شوریجه 194
5-6- تشخیص منشاء تولید سولفید هیدروژن در مخازن گازی کپه داغ 196
5-6-1- بررسی ترکیب شیمیایی مخازن 196
5-6-2- فشار و دمای مخازن 198
5-6-3- پتروگرافی سازندهای مخزنی منطقه کپه داغ 198
5-6-4- بررسی آلکانهای نرمال و بیومارکری و آب سازند مخازن 200
5-6-4-1- فراوانی آلکانهای نرمال مخازن 200
5-6-4-2- بیومارکر آدامانتان 200
5-6-4-3- مطالعه ترکیبات هیدروکربوری گوگرد دار در مخازن 202
5-6-4-4- مطالعه آب سازندی مخازن 204
5-6-4-5- بررسی بلوغ میعانات گازی مخازن 207
5-6-4-6- مقایسه ترکیبات گازی مخازن با هیدروکربورهای سنگ منشاء 209
5-6-4-7- ایزوتوپ کربن و گوگرد آلی مخازن 209
5-7- نتیجه گیری کلی در مورد منشاء سولفید هیدروژن 212
فصل ششم: نتیجه گیری نهایی 213
پیشنهادات 214
پیوستها 215
منابع و مآخذ 216
فصل اول
در حال حاضر و دهه های آینده ،گاز طبیعی یکی از عمده ترین منابع تامین کننده انرژی و مواد اولیه صنایع پتروشیمی در جهان است. روند رو به رشد مصرف نفت ومحدودیت منابع و استخراج آن باعث گردیده است.نگرشی ویژه به منابع هیدروکربنی گازی معطوف شود.این در حالی است که ایران با داشتن بیش از 18 درصد منابع گاز شناخته شده دنیا ،پتانسیل بالقوه ای هم از لحاظ اکتشاف مخازن گازی داراست افزون بر این وجود میادین عظیم مشترک بین ایران و کشورهای همسایه از جمله حوضه خلیج فارس و همسایگان غربی و شمال شرقی، اهمیت توجه به مسائل بهره برداری از این منابع را روشن میسازد. حوضه رسوبی کپه داغ در شمال شرق ایران، بخش وسیعی از ترکمنستان وشمال افغانستان واقع است. در هر سه کشور میدانهای گازی عظیمی کشف شده است. محققین و دانشمندان علوم زمین از جمله ژئوفیزیستها و ژئوشیمیستها تمام سعی و تلاش خود را بکار میگیرند تا از میزان ریسک عملیات اکتشافی بکاهند ودرمناطقی اقدام به حفاری کنند که احتمال دستیابی به نفت وگاز، نسبتا زیاد باشد.ژئوشیمیستهای آلی با تکیه بر اطلاعات ناحیه ای ،محلهای مناسب برای حفاریهای آتی را مشخص می کنند ونظر مط دهند که در یک چاه اکتشافی باید در انتظار نفت ، گاز و یا هر دو بود. ژئوشیمی آلی میتواند عوامل مخرب در مخزن مثل تخریب میکروبی ،آبشویی، کرکینگ ،اکسیداسیون و غیره را مشخص کند و در مورد کاهش روند تخریب و حفظ مواد آلی نظر دهد.
در این پایان نامه حوضه رسوب کپه داغ و مخزن گازی آن را از نظر نوع و کیفیت سنگ منشا، شرایط رسوبی، نوع کروژن ،میزان بلوغ وتوان تولید هیدروکربن و نوع هیدروکربن تولیدی را با استفاده از روشهای مختلف ژئوشیمی مورد بررسی قرار میدهیم و در نهایت به بررسی علل افزایش غلظت سولفید هیدروژن در مخزن مزدوران نسبت به شوریجه میپردازیم.
فصل دوم زمین شناسی منطقه کپه داغ
2-1-مقدمه:
حوضه رسوبی کپه داغ آمودریا در ایران، ترکمنستان ،ازبکستان،افغانستان و تاجیکستان گسترش دارد.میدانهای گازی فوق عظیم خانگیران در ایران، دولت آباد-دونمز در ترکمنستان و میدانهای گازی عظیم مری،شاتلیک و بایرام علی در ترکمنستان و گاز لی در ازبکستان و بسیاری از میدانهای گازی دیگر مانند گنبدلی در ایران و گوگرداغ ،یتیم داغ و جرقدوق در افغانستان دراین حوضه کشف شده اند.حوضه رسوبی کپه داغ به صورت حوضه ای مستقل از اواسط ژوراسیک میانی شکل گرفته است.بخش ایرانی این حوضه با وسعت 50000 کیلومتر مربع در شمال استان خراسان و گلستان قرار دارد.ضخامت سنگهای رسوبی این حوضه در ایران بالغ بر هفت هزار متر است.ضخامت زیاد سنگهای رسوبی دریایی و نبود فعالیتهای آذرین، این حوضه را پس از حوضه رسوبی زاگرس مناسب ترین حوضه برای تشکیل و تجمع هیدروکربن قرار داده است.در این بخش حوضه رسوبی کپه داغ را از نظر زمین شناسی مورد بررسی و مطالعه قرار میدهیم.
2-2-محل و موقعیت
حوضه رسوبی کپه داغ در شمال شرق ایران،بخش وسیعی از ترکمنستان وشمال افغانستان واقع است. در هر سه کشور میدانهای گازهای عظیمی کشف شده است. بین′30وْ 35 تا ′15وْ38 عرض شمالی و′00وْ54 تا ′13وْ61 طول شرقی قرار دارد.]2[
وسعت منطقه در حدود 550000 کیلومتر مربع یعنی تقریبا 3.3 درصد کل کشور است.کپه داغ ایران منطقه ای کوهستانی است. دو رشته کوه با روندی موازی بیشتر سطح منطقه را پوشانیده است. رشته شمالی را کوههای کپه داغ و هزار مسجد ورشته جنوبی را کوههای گلستان آلاداغ و بینالود تشکیل میدهند. بین این دو رشته دشتهای مشهد،قوچان ،شیروان ،بجنورد و گرماب قراردارد.در غرب منطقه این دو ررشته کوه بهم میپیوندند. دشت سرخس در شرق منطقه در حاشیه دشت ترکمنستان وصحرای قره قوم قرار دارد.دشت گرگان در غرب منطقه ،در ادامه گودال دریای خزر است. شکل(1-2)این منطقه را نشان داده است.
این فایل به همراه چکیده، فهرست مطالب، متن اصلی و منابع تحقیق با فرمت word در اختیار شما قرار
می گیرد.
تعداد صفحات:234
بخشی از متن اصلی :
فهرست مطالب :
عنوان صفحه
چکیده 1
مقدمه 3
فصل اول
1-1 - تالاسمی 8
1-2-اتیولوژی و سبب شناسی تالاسمی 8
1-2-1 - خون شناسی 9
1-2-2- خون سازی و گلبولهای قرمز 10
1-3- تالاسمی و انواع آن 10
1-3-1 آلفا تالاسمی 10
1-3-2- بتا تالاسمی 11
1-3-2-1 بتا تالاسمی مینور(سالم ناقل) 11
1-3-2-2 – بتا تالاسمی ماژور( بیماری تالاسمی) 12
1-3-2-3-بتا تالاسمی بینابینی 13
1-4- تشخیص تالاسمی 13
1-5- درمان تالاسمی 13
1-6- فیزیولوژی عنصر آهن و اهمیت آن در بدن انسان 14
1-6-1- مسمومیت حاد آهنی 15
1-7- دسفرال 16
1-7-1- نحوه استفاده از داروی دسفرال 17
1-7-2-کاربردهای داروی دسفرال در پزشکی 18
1-7-3- عوارض ناشی از داروی دسفرال 19
1-7-4- اقدامات احتیاطی در مورد داروی دسفرال 19
1-7-5- ملاک توقف درمان بوسیله دسفرال 20
فصل دوم
2-1- سیدرو فورها 22
2-1-1- هیدروکسامات ها 24
2-1-2-فنولات ها یا کاتکولات ها 25
2-2- دسفری اکسامین ها 26
2- 2-1 – ساختمان دسفری اکسامین 28
2-2-2- دسفراکسامین بصورت آنتی اکسیدان 28
2-2-3 – خصوصیات فیزیکو و شیمیایی دسفراکسامین 29
2-2-4- مکانیسم دسفراکسامین در جلوگیری از بیماریهای با بار اضافی آهن 29
2-2-5- تشکیل رادیکال DFO nitroxide 30
2-3- دسفری اکسامین B 31
2-3-1- بیوسنتر دسفری اکسامین B 33
2-3-2- ژنهای کد کننده دسفری اکسامین B 33
2-4- تولید کننده¬های دسفری اکسامین 34
2-5- اهمیت آهن بر روی میکروارگانیسمها 35
2-6- مکانیسم عمل سیدروفورها در ارتباط با انتقال آهن به درون سلول میکروارگانیسمها 36
2-7- تولید، استخراج و تخلیص دسفری اکسامین B 37
فصل سوم
3-1- اکتینومیست ها 40
3-2- استرپتومایسس ها 43
3-2-1- پاتولوژی 43
3-2-2 – مرفولوژی و ساختمان 43
3-2-3- مشخصات کلنی 454
3-2-4- اسپورزایی 47
3-2-5- ترکیبات پوشش سلولی 49
3-2-6- تغذیه و فاکتورهای موثر بر رشد و خصوصیات فیزیکوشیمیایی 49
3-2-6-1- تغذیه 49
3-2-6-2- اکسیژن 50
3-2-6-3 - رطوبت 50
3-2-6-4- دما 51
3-2-6-5- pH 51
3-2-6-6- اکولوژی 52
3-2-6-7- بیولوژی توسعه یافته استرپتومایسس 53
3-2-7- انواع فرآورده های میکروبی 56
3-2-7-1- متابولیت های اولیه 56
3-2-7-2- متابولیت های ثانویه 56
3-2-7-2-1- آنتی بیوتیک ها 58
3-2-7-2-1-1- فیزیولوژی و تنظیم تولید آنتی بیوتیک 58
3-2-7-3- آنزیمها 63
3-2-7-3-1- پروتئازها 63
3-2-7-3-1-1- پروتئازهای اسیدی 67
3-2-7-3-1-1-1- رنین 67
3-2-7-3-1-2- پروتئازهای خنثی 67
3-2-7-3-1-3- پروتئاز های قلیایی 67
3-2-7-3-1-3-1- فرآیند تخمیر پروتئازهای قلیایی 68
3-2-7-3-1-3-2- تعیین فعالیت پروتئاز قلیایی 69
3-2-7-3-1-4- بازدارنده های فعالیت آنزیم پروتئاز وشلاته کننده ها 69
3-2-7-3-1-5- تجزیه 71
3-2-7-3-1-6- پروتئاز ها و استرپتومایسسها 71
3-2-8- محیط کشت تخمیر صنعتی 71
3-2-8-1- نیازهای غذایی میکروارگانیسمها 71
3-2-8-1-1- کربن 74
3-2-8-1-1-1- منابع کربن و استرپتومایسس ها 77
3-2-8-1-2-نیتروژن 78
3-2-8-1-2-1- منابع نیتروژن و استرپتومایسس ها 80
3-2-8-1-3- هیدروژن و اکسیژن 80
3-2-8-1-4- مواد معدنی 80
3-2-8-2-تنظیم کننده های متابولیکی 81
3-2-8-3- ضد کف ها 82
3-2-9- بیوسنتز در استرپتومایسس ها 83
فصل چهارم
4-1- دستگاه های مورد استفاده 86
4-2- وسایل مورد استفاده 86
4-3 - محیط های کشت مایع برای رشد باکتری 88
4-4- محیط های کشت جامد برای رشد باکتری 89
4-5- محیط های جامد برای تولید اسپور 89
4-6- مواد لازم جهت رنگ آمیزی گرم 90
4-7- مواد لازم جهت استفاده از میکروسکوپ نوری 91
4-8- محیط مورد استفاده جهت شناسایی کیفی دسفری اکسامین: محیط Des4 91
4-9- محیط مورد استفاده جهت اندازه گیری تولید دسفری اکسامین محیط Soy bean 91
4-10- مواد لازم جهت نگهداری و ذخیره باکتری ها 92
4-11- معرف های دسفری اکسامین 92
4-12- مواد لازم جهت رسم منحنی استاندارد دسفری اکسامین B 92
4-13- مواد لازم جهت استخراج دسفری اکسامین 92
4-14- مواد لازم جهت تهیه محلول Lysing Buffer 93
4-14-1 – مواد لازم جهت تهیه محلول Tris Hcl 93
4-15- محلول کازئین %5/0 دربافر فسفات 93
4-15-1- بافر فسفات (PBS) 93
4-16- محلول لوری (Lowry) 93
فصل پنجم
5 – ١- تهیه و آماده سازی سویه استرپتومایسس پیلوسوس 98
5 ـ ٢ ـ بررسی خصوصیات مرفولوژیکی سویه استرپتومایسس پیلوسوس 98
5-٢-١- خصوصیات ماکروسکوپی 99
5- ٢-١-١- کشت استرپتومایسس پیلوسوس بر روی محیط جامد 99
5-٢-١-٢- کشت استرپتومایسس پیلوسوس در محیط مایع 99
5-٢-٢ خصوصیات میکروسکوپی 99
5-٢-٢-١- تهیه لام از محیط کشت جامد 99
5-٢-٢-٢- تهیه لام از محیط کشت مایع 100
5ـ ٢ـ٢ـ ٣ـ رنگ آمیزی گرم 100
5 ـ ٣ـ تهیه مایع تلقیح 100
5 ـ ٣ـ ١ـ تهیه محیط ذخیره 101
5 ـ ٣ـ ٢ـ تهیه سوسپانسیون اسپور 101
5ـ ٤ـ رسم منحنی رشد استرپتومایسس پیلوسوس 101
5ـ ٥ـ بررسی تغییرات pH در محیط کشت Soybean 102
5ـ ٦ـ تولید دسفری اکسامین توسط استرپتومایسس پیلوسوس 102
5ـ ٦ـ ١ـ تشخیص کیفی دسفری اکسامین 102
5ـ ٦ـ ٢ـ سنجش میزان تولید دسفری اکسامین در هر روز 103
5-6-3- رسم منحنی استاندارد دسفرال 103
5-٧ـ استخراج دسفری اکسامین بوسیله فنل-کلروفرم 104
5 ـ ٧ـ ١ـ مزتیله کردن دسفری اکسامین 105
5-8- تعیین وجود دسفری اکسامین B در ماده استخراج شده 105
5ـ ٩ـ بهینه سازی محیط کشت تولید دسفری اکسامین 107
5ـ ٩ـ ١ـ بررسی اثر اسید آمینه ترئونین بر تولید دسفری اکسامین 107
5 ـ ٩ـ ١ـ ١ـ بررسی اثر اسید آمینه ترئونین بر تولید دسفری اکسامین در یک محدوده غلظت 107
5ـ ٩ـ ٢ـ بررسی اثر اسیدآمینه ترئونین و اسید آمینه لوسین و ویتامین تیامینB1) ( برتولید دسفری اکسامین 108
5 ـ ٩ـ ٣ـ بررسی گلوکز و ملاس و سوکروز بر تولید دسفری اکسامین 108
5ـ ٩ـ ٤ـ بررسی اثر شلاته کننده های کاتیون بر تولید دسفری اکسامین 108
5 ـ ٩ـ ٥ـ استفاده از محیط کشت عصاره مخمر به جای استفاده از محیط کشت Soybean 109
5 ـ ٩ـ ٦ـ بررسی اثر مواد معدنی مختلف بر میزان تولید دسفری اکسامین 109
5 ـ٩ـ٦ـ١ـ بررسی تاثیر مواد معدنی در غلظت های مختلف بر میزان تولید دسفری اکسامین 111
5 ـ ١٠ - بررسی پروتئاز تولیدی از استرپتومایسس پیلوسوس در حضور شلاته کننده ها و مواد معدنی مختلف 112
5 ـ ١٠ـ ١ـ کشت باکتری و سنجش پروتئاز 112
5 ـ ١٠ـ 2ـ تخلیص کازئین 113
فصل ششم
6ـ ١ـ بررسی خصوصیات مرفولوژیکی ماکروسکوپی استرپتومایسس پیلوسوس 115
6ـ ١ـ ١¬ـ خصوصیات ماکروسکوپی سویه استاندارد بر روی محیط کشت جامد 115
6 ـ ١ـ٢ـ خصوصیات ماکروسکوپی سویه استاندارد در محیط کشت مایع 115
6 ـ ٢ـ بررسی خصوصیات مرفولوژیکی میکروسکوپی استرپتومایسس پیلوسوس 116
6 ـ٣ـ رسم منحنی رشد استرپتوماسیس پیلوسوس در محیط کشت MYB 116
6-4- رسم منحنی pH بر حسب زمان در محیط کشت Soybean حاوی سویه استرپتومایسس پیلوسس 118
6 ـ ٥ـ تشخیص کیفی و کمی دسفری اکسامین تولیدی 120
6-5-1- تشخیص کیفی و تولید و یا عدم تولید دسفری اکسامین 120
6ـ٥ـ2ـ رسم نمودار استاندارد دسفرال 120
6ـ٥ـ3ـ میزان دسفری اکسامین تولیدی در هر روز توسط سویه استرپتومایسس پیلوسوس در محیط Soy bean 121
6-6- نتایج مربوط به استخراج دسفری اکسامین تولید شده توسط سویه استرپتومایسس پیلوسوس 122
6-6-1- نتایج مربوط به تأیید وجود دسفری اکسامین B در ماده استخراج شده 122
6-7- بهینه سازی محیط کشت تولید دسفری اکسامین 124
6-7-1 بررسی اثر اسید آمینه ترئونین بر تولید دسفری اکسامین 124
6-7-1-1- بررسی اثر اسید آمینه ترئونین بر تولید دسفری اکسامین در یک محدوده غلظت 124
6ـ7ـ ٢ـ بررسی اثر اسید آمینه های ترئونین و لوسین و ویتامین تیامین (B1 ) 126
6 ـ 7ـ٣ـ بررسی گلوکز ، ملاس، سوکروز بر تولید دسفری اکسامین 126
6ـ 7ـ ٤ـ بررسی اثر شلاته کننده های کاتیون بر میزان تولید دسفری اکسامین 127
6ـ 7ـ ٥ـ استفاده از محیط کشت عصاره مخمر به جای استفاده از محیط کشت Soybean 128
6 ـ 7ـ ٦ـ بررسی اثر مواد معدنی مختلف بر میزان تولید دسفری اکسامین 128
6 – 7 – 6 – 1 – بررسی اثر مواد مختلف با غلظت متفاوت بر میزان تولید دسفری اکسامین 130
6ـ8ـ بررسی پروتئاز تولیدی از استرپتومایسس پیلوسوس در حضور شلاتهکننده و مواد معدنی مختلف 139
فصل هفتم
- بحث و نتیجه گیری 143
- پیشنهادات 147
- فهرست منابع 149
چکیده
دسفری اکسامینB، تنها سیدروفوری است که فرم مزتیله آن (نمک متان سولفونات دسفری اکسامین B) با نام تجاری دسفرال جهت درمان بیماران تالاسمی، به منظور شلاته کردن بار اضافی آهن، استفاده می گردد.
به همین منظور جهت تولید دسفری اکسامین B، از سویه استرپتومایسس پیلوسوس استفاده گردید و سویه مربوطه در محیط کشت Soy bean کشت داده شد و دسفری اکسامین آن بوسیله استفاده از محلول فنل- کلروفرم و اتر استخراج گردید. به منظور طراحی این سیستم بیولوژیکی و افزایش بهره برداری از محصول مذکور از منابع کربن و نیتروژن مختلف استفاده گردید و تاثیر هر یک بر میزان دسفری اکسامین تولیدی بررسی شد. چنانچه مشاهده گردید که اسید آمینه ترئونین، افزایش قابل ملاحظه ای بر دسفری اکسامین تولیدی از سویه مذکور دارد و مقدار %125/0 ترئونین، در محیط کشت Soy bean، بسیار مطلوب می باشد. از طرفی اثر ویتامین تیامین (B1)بررسی گردید و مشاهده شد که تاثیر مثبت بر دسفر اکسامین تولیدی دارد و در رده بعد از اسید آمینه ترئونین قرار می گیرد. همچنین اثر اسید آمینه لوسین نیز بر تولید دسفری اکسامین مثبت بوده و در رده بعد از ویتامین تیامین (B1) قرار می گیرد.
در ایـن تحقـیق از شلاته کننـده های کاتیونی EDTA، 8-hydroxyquinoline در محـیط کشت Soy bean استفاده شد و مشاهده گردید که شلاته کننده های مذکور اثر منفی بر تولید دسفری اکسامین دارند در نتیجه، کاتیونها، اثر مثبت بر افزایش میزان دسفری اکسامین تولیدی خواهند داشت به همین منظور مواد معدنی مختلف از جمله اثر
CaCl2.2H2O,MgSO4.7H2O,ZnSO4.7H2O, MnCl2, FeSO4.7H2O
و همچنین اثرCaCl2.2H2O,MgSO4.7H2O به طور همزمان در محیط کشت Soy bean بررسی گردید.
در این تحقیق نتایج مطلوبی بدست آمد، بطوری که کلسیم (بصورت CaCl2.2H2O) اثر قابل ملاحظهای بر افزایش میزان دسفری اکسامین تولیدی از سویه مذکور دارد و مقدار 8/2، و 2، CaCl2.2H2O سبب افزایش قابل توجهی بر میزان محصول مذکور می گردد. و بدین ترتیب تاثیر مثبت کلسیم، بر تولید دسفری اکسامین مشخص گردید.
در این آزمایشات تاثیر مثبت روی، منیزیم و منگنز بر دسفری اکسامین تولیدی آشکار گردید بطوری که غلظت 2-10 × 4/0، ZnSO4.7H2O و 6/0، MgSO4.7H2O و 2، MnCl2 سبب افزایش تولید دسفری اکسامین شد.
از طرفی استفاده همزمان CaCl2.2H2O,MgSO4.7H2O در محیط کشت Soy bean اثر منفی بر تولید دسفری اکسامین را نشان داد.
همچنین بررسی ها در مورد آهن (بصورت FeSO4.7H2O) نشان داد که افزایش غلظت آهن، سبب کاهش میزان دسفری اکسامین تولیدی گردید.
و اینگونه با استفاده از منابع نیتروژن و مواد معدنی مختلف بهینه سازی محیط کشت انجام گرفت و تولید دسفری اکسامین از سویه استرپتومایسس پیلوسوس به میزان قابل ملاحظه ای افزایش یافت.
در این تحقیق، پروتئاز تولیدی از سویه استرپتومایسس پیلوسوس نیز بوسیله روش لوری (Lowry) اندازه گیری شد و اثر روی بصورت ZnSO4.7H2Oو آهن بصورت FeSO4.7H2O نیز بررسی گردید و مشاهده شد که افزایش غلظت روی، سبب افزایش پروتئاز تولیدی، از سویه مذکور گردید.
مقدمه
چه قدر زیبا و شاعرانه است که انسان به نوای دلنواز عاشقانهای که در دل موجودات زنده نواخته می شود گوش دهد. تمام پدیده های هستی که زائیده اراده و مشیت الهی هستند منظر شناخت خداوند قادرند و چه با شکوه است علمی که انسان طالب معرفت را به سرچشمه شناخت این پدیده ها راهنمایی کند.
چشم دل بازکن که جان بینی آنچه نادیدنی است آن بینی
امروزه عرصه ای از حیات بشری را نمی توان یافت که تأثیر مثبت از بیوتکنولوژی نداشته باشد. کلمه بیوتکنولوژی که از دو بخش بیو (به معنی زندگی و موجودات زنده) و تکنولوژی (به معنای هنر بشر در استفاده از علم) تشکیل شده است [10] بطور کلی بیوتکنولوژی به مفهوم استفاده از موجودات زنده، اندام ها و سلولهای آنها برای تولید یک فرآورده با خدمات با ارزش اقتصادی به منظور بهبودرفاه بشر می باشد. [10] بعبارت دیگر بیوتکنولوژی دانشی است که در رابطه با استفاده از موجودات و متابولیتهای آنها جهت تولید فرآورده های مختلف دارویی، غذایی، شیمیایی و غیره در مقیاس صنعتی بحث می کند. [14]
سرآغاز بیوتکنولوژی به ده هزار سال پیش برمی گردد. [10] روند تکاملی بیوتکنولوژی در طی هزاران سال شکل گرفته است، ولی بیوتکنولوژی مدرن در اواسط دهه 70 متولد شد. [14] از همان آغاز، بیوتکنولوژی در قالب مهندسی شیمی توسعه یافت، از این رو با توسعه ی فرآیندهای صنعتی، گستردگی بیشتری پیدا کرد. [14) بیوتکنولوژی از تکنیکهای مختلف ژنتیک، میکروبیولوژی کاربردی، شیمی، بیو شیمی، بیو لوژی، مهندسی فرآیند و غیره تشکیل میشود.[14]
این فایل به همراه چکیده، فهرست مطالب، متن اصلی و منابع تحقیق با فرمت docx( wordقابل ویرایش) در اختیار شما قرار
می گیرد.
تعداد صفحات:186